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Abstract. Recently there has been much progress in understanding confinement in the N=2 supersym-
metric Yang–Mills theory. Here we shall investigate how these results could be extended to explain color
confinement in the ordinary Yang–Mills theory. In particular, we inquire whether confinement in the N=2
theory can be related to color confinement in the ordinary Yang–Mills theory in the framework of Parisi–
Sourlas dimensional reduction. For this we study the partition function of the ordinary Yang–Mills theory
in different regimes. Our analysis reveals that an intimate connection indeed exists between these two
approaches.

1 Introduction

The N=2 supersymmetric Yang–Mills theory with its su-
persymmetry broken to N=1, materializes [1] the quali-
tative picture of confinement developed in [2]. However,
despite remarkable progress we still lack an explanation
why color and quarks confine in the standard QCD. In
the present paper we shall address the problem of color
confinement in ordinary Yang–Mills theory. In particular,
we wish to understand how the results obtained in the
N=2 supersymmetric case could be extended. There are
some indications that a direct connection might exist:

Several years ago it has been proposed [3,4] that color
confinement in the ordinary Yang–Mills theory is a con-
sequence of the Parisi–Sourlas dimensional reduction [5].
In this approach one argues that in the infrared limit
the Yang–Mills ground state can be approximated by a
medium of randomly distributed white noise (Gaussian)
color-electric and color-magnetic fields. An effective field
theory description of this medium entails the Parisi–Sour-
las supersymmetric Yang–Mills theory, and confinement
follows from the ensuing D=4 → D=2 dimensional reduc-
tion.

Subsequently it has been observed [6] that the Parisi–
Sourlas supersymmetric Yang–Mills theory is also related
to the four-dimensional topological Yang–Mills theory [7].
Since the topological Yang–Mills theory is a twisted ver-
sion of the N=2 supersymmetric theory, it becomes natu-
ral to expect that confinement in the N=2 theory should
also admit a Parisi–Sourlas interpretation. In particular,
there should be an intimate relationship between the con-
finement mechanisms in the N=2 supersymmetric and the
ordinary Yang–Mills theories.

a Supported by Göran Gustafsson Foundation for Science
and Medicine and by NFR Grant F-AA/FU 06821-308

Here we shall establish that a direct connection be-
tween the N=2 and the Parisi–Sourlas approaches to con-
finement indeed exists. For this we employ the background
field method in path integral formalism [8]. We explicitly
perform the summation over all classical Yang–Mills back-
ground field configurations, and obtain an effective field
theory which exhibits the Parisi–Sourlas supersymmetry.
On the other hand when we restrict the summation to
either self-dual or anti-self-dual background field config-
urations, we find an effective field theory that contains
the N=2 supersymmetric Yang–Mills theory in a similar
manner. Furthermore, by analyzing the N=2 supersymme-
try algebra that emerges in our construction we conclude
that in our case the N=2 theory is necessarily restricted to
points of its moduli space where massless dyons appear.
According to [1] these massless dyons should condense
which leads to confinement in the N=2 theory. Conse-
quently our results imply that the dyon condensate is de-
scribed by the Parisi–Sourlas supersymmetric Yang–Mills
theory, as a medium of randomly distributed color-electric
and color-magnetic fields.

In the next section we first shortly review the back-
ground field formalism. We then describe how we use this
formalism to implement a summation either over all possi-
ble background fields, or over either self-dual or anti-self-
dual background fields. In Sect. 3 we consider the effective
field theory formulation that emerges when we sum over
all possible background fields. We show that the result
contains the Parisi–Sourlas supersymmetric extension of
ordinary Yang–Mills theory. In Sect. 4 we proceed towards
the self-dual approximation. For this we interpret the ef-
fective measure that appears in our path integral in terms
of topological Yang–Mills theory. We then apply this result
to show how our self-dual approximation entails topologi-
cal Yang–Mills theory instead of the Parisi–Sourlas one. In
Sect. 5 we (un)twist the action of Lorentz transformations
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in our topological theory, and show that it corresponds to
the minimal N=2 supersymmetric Yang–Mills theory at a
point in its moduli space where massless dyons appear. In
Sect. 6 we compare our approaches. In the appendices we
describe some technical aspects of our work.

2 Background field quantization

In the present paper we shall argue that both Parisi–
Sourlas and N=2 supersymmetric theories emerge when
an ordinary Yang–Mills theory is formulated in an appro-
priate background. For this we consider the background
field quantization [8,9] of a SU(N) Yang–Mills theory with
a gauge field Ca

µ and a field strength

Fµν = [Dµ, Dν ] = ∂µCν − ∂νCµ + [Cµ, Cν ] . (1)

We normalize the Lie algebra generators T a so that the
classical action is

SYM(C) =
∫

1
4
F a

µνF
a
µν ≡

∫
1
4
F 2

µν . (2)

We consider the Euclidean partition function

Z =
∫

A/G
[ dC] exp{−SYM(C)} (3)

in the background field formalism. Here the functional in-
tegration is extended over the space of gauge equivalence
classes A/G, where A is the affine space of connections on
the pertinent principal bundle and G are the gauge trans-
formations. The integration can be performed over A pro-
vided we fix the gauge symmetry e.g. using the standard
Faddeev–Popov procedure. The usual nilpotent BRST op-
erator is

Ω = c Dµ(C)Hµ +
1
2
b[c, c] + tc̄ . (4)

The fields c,b are the ghost and its momentum, c̄, b̄ the
anti-ghost and its momentum and t the Lagrange-multiplier.
The operatorΩ acts through the (formal) Poisson-brackets
given e.g. for the gauge field C and its momentum H by
the relation

{Ha
µ, C

b
ν} = −δab

µν . (5)
We fix the gauge by using the gauge-fermion

Ψ = b̄
(
t+Dµ(A)Cµ

)
, (6)

where Aµ is a background field that satisfies the Lorentz
gauge condition ∂ ·A = 0.

2.1 The background gas approximation

The partition function (3) becomes in the background for-
malism

Z[A, J ] =
∫

A
[ dC][ db̄][ dc][ dt] exp{−SYM(C) − {Ω,Ψ}}

=
∫

A
[ dC] δ

(
D(A) · C

)
det ‖D(A) ·D(C)‖

exp{−S[C]} . (7)

Since the functional integral is performed over an affine
space A we can shift the integration variable: For this we
represent the gauge field Cµ as a linear combination

Cµ = Aµ + Qµ . (8)

The functional integral now becomes

Z[A, J ] =
∫

A
[ dC] δ

(
D(A) ·Q

)
det ‖D(A) ·D(A+Q)‖

exp
(

− S[A+Q] − J ·Q
)
, (9)

where we have coupled a current Jµ to the fluctuation field
Qµ and used ∂ ·A = 0. The way this coupling is done turns
particularly important in what follows.

The partition function Z is invariant under local gauge
transformations if Aµ transforms as a gauge field and if
Jµ transforms in the adjoint representation of the gauge
group. This, together with the assumption that Aµ satisfy
the Lorentz gauge condition, means that Z is a locally
defined functional on the space of gauge orbits A/G.

In what follows, we shall find a globally on A/G de-
fined expression for the partition function. In the above,
Aµ was understood as a (classical) background field con-
figuration around which the (possibly not small) quantum
fluctuations Qµ take place. In particular, if the base man-
ifold has no boundary, or Q has compact support, then
the (integrated) second Chern character

Ch2(FA) = − 1
16π2

∫
FµνF̃µν(A) (10)

of the quantum field remains constant in the background
gauge. This is due to the fact that then the second Chern
characters can differ only by an exact differential of a
gauge-invariant 3-form

Ch2(FA+Q) = Ch2(FA)

− 1
8π2 d tr

(
Q ∧ (DAQ+

2
3
Q ∧Q+ 2FA)

)
. (11)

In order to guarantee that our partition function also de-
scribes nonperturbative phenomena correctly, we should
in some consistent fashion extend the partition function
out of the neighborhood of the chosen connection A. For
this, it is useful to notice following [9] that if we choose
the current J = J(A) so that

δZ[J,A]
δJ

= 0 , (12)

we then find
Z[J(A), A] = e−Γ [A] , (13)

where Γ [A] is the standard Yang–Mills effective action. We
can now turn to the problem into a classical construction,
and study the classical partition function

Z[J ] =
∑

F(A)=0

Z[J,A] e2πiθ(A)k , (14)
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where the sum is taken over all those fields A ∈ A/G that
satisfy the yet unspecified condition F(A) = 0. The sum-
mand is merely the Boltzmann weight appended with an
A-dependent “chemical potential” for the instanton num-
ber k = Ch2(A).

The expression (14) is easiest analyzed in the path
integral formalism. There is, however, no tractable way to
deal with the absolute values of a fluctuation determinant
that will appear in this treatment. It is therefore necessary
to make a simplifying assumption about the A-dependence
of the potential θ(A). For this, let λn be the eigenvalues
of the fluctuation matrix,

δF
δA

ψn = λnψn . (15)

We define
∑

λn<0

1 =
1
2

∑
λn

1 − 1
2

∑
λn

sign(λn)

=
1
2
ζF − 1

2
ηF , (16)

where ζF is the ζ-function of the fluctuation matrix

ζF (s) =
∑
λn

|λn|−s , (17)

and ηF is its η-invariant,

ηF (s) =
∑
λn

sign(λn)|λn|−s , (18)

both evaluated at s → 0. Now the sign of the fluctuation
determinant is given by

sign det ||δF
δA

|| = exp
(
iπ

∑
λn<0

1
)

= exp
( iπ

2
(ζF − ηF )

)
. (19)

We shall conveniently choose the form of the potential,
namely, let

θ[A] = θ0 +
1
4k

(
ζF (A) − ηF (A)

)
, (20)

which is formally supposed to be valid even for k = 0. The
reason for this is that now we can write the summation
over the background fields A as an integral

Z[J ] =
∫

A/G
[ dA] δ

(
F(A)

)
det ‖δF(A)

δA
‖ Z[A, J ]

× exp(−2πiθ0k) . (21)

The role of the phase factors is simply to cancel the ab-
solute value signs that a delta-functional would produce
in the path-integral treatment. This yields the natural ex-
tension to the case where the moduli space M = {A ∈
A/G | F(A) = 0} is not discrete but a manifold with
singularities. The continuous case necessitates, however, a

proper treatment of zero modes as in [7], an issue which
we shall not treat in detail here. Note that we also leave
the global normalization of Z[J ] unspecified.

Let us next turn to the question of gauge fixing. In the
path integral

Z[J ] =
∫

A
[ dA] δ

(
F(A)

)
det ‖δF(A)

δA
‖

× δ
(
∂ ·A

)
det ‖∂ ·D(A)‖

×
∫

Ω1(M)
[ dQ] δ

(
D(A) ·Q

)

× det ‖D(A) ·D(A+Q)‖
× exp

(
− S[A+Q] − 2πikθ0 − J ·Q

)
, (22)

there are no unfixed gauge symmetries. The expression can
be reinterpreted to originate from the path integral quan-
tization of the classical theory SYM[A+Q] that possesses
the following two local infinitesimal gauge symmetries:

1. The gauge symmetry of the background field A is given
by the infinitesimal transformations

δAµ = Dµ(A) ε
δQµ = [Qµ, ε] . (23)

The generating BRST operator and the gauge fermion
used above are

Ω1 = c
(
Dµ(A)Eµ + [Qµ, Pµ]

)
+

1
2
b[c, c] + tc̄

Ψ1 = b̄
(
t+ ∂µAµ

)
. (24)

2. The gauge symmetry of the fluctuation field Q is given
by

δAµ = 0
δQµ = Dµ(A+Q) ε . (25)

The BRST operator and the gauge fermion are

Ω2 = uDµ(A+Q)Pµ +
1
2
v[u,u] + hū

Ψ2 = v̄
(
h+Dµ(A)Qµ

)
. (26)

Here we used Poisson-brackets

{Ea
µ, A

b
ν} = −δab

µν , {P a
µ , Q

b
ν} = −δab

µν . (27)

These nilpotent BRST operators do not commute mu-
tually, but they can be combined into a nilpotent operator
by adding a ghost term

Ω = Ω1 +Ω2 + [u, c]v . (28)

The resulting BRST operator has a simple interpretation:
Let us make a change of variables

A+ = A+Q

A− = A (29)
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and accordingly for momenta, so that the transformation
has a trivial Jacobian and preserves the Poisson brackets.
This, and a similar transformation in the ghost sector,
brings the BRST operator into the form

Ω = Ω− +Ω+ , (30)

where the now mutually commuting BRST operators are

Ω± = u±Dµ(A±)E±,µ +
1
2
v±[u±,u±]

+ h±ū± (31)

in obvious notation.
The partition function can thus be written in a geo-

metric form

Z[J ] =
∫

[ dA+][ du+][ dv̄+][ dt+][ dA−][ du−][ dv̄−][ dt−]

× δ
(
F(A−)

)
det ‖δF(A−)

δA−
‖

× exp
(

− S[A+] − 2πiθ0Ch2(FA−)

−{Ω,Ψ− + Ψ+} − J · (A+ −A−)
)
. (32)

This expression is a well defined integral over a globally
defined density over the connection space A+ ⊕ A−, and
no more refers to a particular neighborhood of some pre-
ferred connection. In addition the functional Z[J ] is still
invariant under the diagonal part of the gauge transfor-
mations G+ ⊕ G−, as J transforms as an adjoint field.

Now we can use the freedom to choose the gauge at
will: in particular, we can factorize the path integral into
the form

Z[J ] =
∫

A/G
[ dA−] exp(−SF [A−])

×
∫

A/G
[ dA+] exp(−SYM[A+])

× exp(J · (A+ −A−)) . (33)

In the following we shall study two different cases

F(A) =
{

F+
A instanton background
Dµ(A)FA,µν classical background. (34)

For both choices of F we shall find – modulo regulariza-
tion issues that we shall deal with later – that in the case
of vanishing current J = 0 the path integral factorizes
completely into a product of the Euler characteristic of
the space of gauge orbits X (A/G) and the original Yang–
Mills partition function. The coupling to the external cur-
rent Jµ plays a crucial rôle here: it determines what the
physically relevant coupling to the fields in the theory is.
Since we choose to quantize fluctuations around classical
configurations, this is where we should couple the exter-
nal field as well. Other currents probe other aspects of the
same quantum field theory.

It is interesting to note that integrating the partition
function Z[J ] against a Gaussian weight in the current J

would yield (perturbatively) a mass term for the fluctua-
tion field Q. We shall later see that in the classical back-
round -case the effective action SF = STYM (cf. Sect. 4)
possesses a translation symmetry in the gauge field: this
would imply that in that case the current J really couples
to ΩTYM-cohomology classes.

The maybe awkward choice of the chemical potential
can be a posteriori justified by the observations that we in-
deed get a globally defined expression on A/G, which does
not depend on the details of the choice of the background
condition F = 0.

2.2 A Morse-theoretic approach

The fact that we could above consider either all classical
backgrounds or merely instantons, can be explained using
Morse theoretic arguments. In this section we shall red-
erive the previous result formally from a different starting
point.

For this we represent as above the gauge field Cµ as a
linear combination

Cµ = Aµ + Qµ , (35)

and select Aµ to satisfy the classical equation of motion,

DµFµν(A) = ∂µFµν + [Aµ, Fµν ] = 0 . (36)

The field Qµ describes perturbative quantum fluctuations
around Aµ, and the classical field Aµ satisfies nontrivial
boundary conditions. The Chern character of Aµ coincides
with the second Chern character of Cµ as we saw previ-
ously.

If we define

Gµν = DµQν −DνQµ , (37)

where the covariant derivative is w.r.t. the classical field
Aµ, we can write the action (2) as

−SYM(A+Q) = −1
4
F 2

µν − QµDνFµν

−1
2
Fµν [Qµ, Qν ] − 1

4
G2

µν

− 1
2
Gµν [Qµ, Qν ] − 1

4
[Qµ, Qν ]2 . (38)

Since Aµ solves the Yang–Mills equation (36), the Q-linear
term QµDνFµν in (38) actually vanishes. However, even-
tually we shall promote Aµ to an off-shell field so that it
will cease to be constrained by (36). In that case the Q-
linear term does not vanish, and in anticipation of this we
have included it also here.

In terms of these background variables the path inte-
gral (3) becomes

ZYM =
∑
Aµ

∫
[ dQ] exp

{∫
−1

4
F 2

µν − QµDνFµν

− 1
2
Fµν [Qµ, Qν ] − 1

4
G2

µν − 1
2
Gµν [Qµ, Qν ]

− 1
4

[Qµ, Qν ]2
}
. (39)
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(In the following we shall not write the various gauge fix-
ing terms, or the coupling to the external current explic-
itly.) The summation extends over all solutions Aµ of the
Yang–Mills equation of motion, and the integral over Qµ

is subject to trivial boundary conditions as was explained
above. Since the moduli space of the classical field Aµ is
generically nontrivial (e.g. for a k-instanton in a SU(2)-
theory it is a (8k− 3)-dimensional manifold), the summa-
tion over Aµ should actually be viewed as an integration
over the relevant moduli. Here we represent it as

∑
Aµ

=
∫

[ dA]δ(DµFµν)
∣∣∣∣ det ||δDµFµν

δAρ
||

∣∣∣∣ . (40)

Using the ζ-function techniques for F(A) = D·FA that
were introduced above, we can rewrite the path integral
(39) as

ZYM =
∫

[ dA][ dQ]δ(DF ) det ||δDF
δA

||

× exp
{∫

−1
4
F 2

µν − QµDνFµν − 1
2
Fµν [Qµ, Qν ]

− 1
4
G2

µν − 1
2
Gµν [Qµ, Qν ] − 1

4
[Qµ, Qν ]2

− i
2
π(ζYM − ηYM)(A)

}
. (41)

Eventually we shall promote the classical background field
Aµ into a dynamical off-shell field. In that case both ζYM
(A) and ηYM(A) become highly nontrivial functionals of
Aµ and their exact evaluation becomes prohibitively com-
plicated. Luckily, for the present purposes this appears
unnecessary: We shall be mostly interested in the infrared
limit of the Yang–Mills theory, and unless we attempt
to compute higher order corrections, besides the renor-
malization of the coupling constant the contribution from
these phase factors becomes irrelevant in this limit. Con-
sequently it is sufficient to proceed with

ZYM ≈
∫

[ dA][ dQ]δ(DµFµν) det ||δDµFµν

δAρ
||

× exp
{∫

−1
4
F 2

µν − QµDνFµν − 1
2
Fµν [Qµ, Qν ]

− 1
4
G2

µν − 1
2
Gµν [Qµ, Qν ]

−1
4

[Qµ, Qν ]2
}
. (42)

In the next section we shall establish that the path
integral (42) entails the Parisi–Sourlas supersymmetric
Yang–Mills theory. In the subsequent sections we then
explain how the topological Yang–Mills theory emerges
when we consider an approximation of (42), obtained by
summing over instantons.

The measure in (42) can be interpreted as the Poincaré–
Hopf representation (see Appendix A) of the Euler char-
acteristic X (A/G) of the space of the gauge equivalence
classes A/G,

X (A/G) =
∫

[ dA]δ(DF ) det ||δDF
δA

||

=
∑

DF=0

sign det ||δDF
δA

|| . (43)

Motivated by the fact that the Euler characteristic is at
least in finite dimensions independent of the Morse func-
tion [10], we introduce alternative representations of (43).
In infinite dimensions the result might depend on the reg-
ulator. Of particular interest are the representations ob-
tained with the first-order (anti-)self-duality equations

F± = Fµν ± 1
2
εµνρσFρσ = 0 , (44)

where the + refers to anti-self-dual configurations and −
to self-dual ones. For finite action configurations these
equations specify the instantons, and the pertinent rep-
resentations of the Euler characteristic (43) are

X (A/G) =
∫

[ dA] δ(F±) det ||δF
±

δA
|| . (45)

We then proceed to approximate the Yang–Mills path in-
tegral by instead of (42) using

ZYM ≈
∑

F ±=0

sign det ||δF
±

δA
||

×
∫

[ dQ] exp
{∫

−1
4
F 2

µν(A+Q)
}

≈
∫

[ dA][ dQ]δ(F±) det ||δF
±

δA
||

× exp
{∫

−1
4
F 2

µν − QµDνFµν

− 1
2
Fµν [Qµ, Qν ] − 1

4
G2

µν − 1
2
Gµν [Qµ, Qν ]

−1
4

[Qµ, Qν ]2
}
. (46)

We must again take the instanton zero modes into account
by using collective coordinates and by inserting a suitable
operator into the path integral to cancel the ghost number
anomaly.

Notice that unlike in the conventional, semiclassical in-
stanton approximation, in (46) we sum either over the self-
dual or over the anti-self-dual configurations. Since we are
only interested in the partition function, this is sufficient.
However, in general we expect that a summation which
extends only over self-dual or over anti-self-dual configu-
rations violates cluster decomposition. For this reason, it
might be more appropriate to rewrite (46) so that we sum
both over self-dual and anti-self-dual configurations. This
means that we represent the Euler characteristic by

X (A/G) =
1
2

( ∑
F+=0

sign det ||δF
+

δA
||

+
∑

F −=0

sign det ||δF
−

δA
||

)
. (47)

But due to the obvious symmetry between the self-dual
and anti-self-dual configurations, in the following it will
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be sufficient to consider only one of these contributions.
When necessary, we can always introduce an explicit sym-
metrization.

3 Parisi–Sourlas supersymmetry

We shall first analyze the summation over all classical so-
lutions,

ZYM ≈
∫

[ dQ][ dA]δ(DF ) det ||δDF
δA

||

× exp{−
∫

1
4
F 2

µν(A+Q)} . (48)

We wish to show that (48) can be interpreted in terms of
the Parisi–Sourlas supersymmetric Yang–Mills theory.

Using the general formalism that we have described in
Appendix B, we introduce one commuting variable πµ and
two anticommuting variables ψµ and P̄µ and write (48) as

ZYM ≈
∫

[ dQ][ dA][ dπ][ dψ][ dP̄]

× exp
{∫

−1
4
F 2

µν(A+Q)

+ πνDµFµν − P̄µ[Fµν , ψν ] (49)

− 1
2
(Dµψν −Dνψµ)(DµP̄ν −DνP̄µ)

}
.

Here the first term depends on A+Q, while the remaining
terms depend on A only.

We first argue that the linear combinations A+ ∼
A + Q and A− ∼ A determine two independent SU(N)
gauge fields. For this we introduce a variable Ea

µ which is
conjugate to the background field Aa

µ, and a variable P a
µ

which is conjugate to the fluctuation field Qa
µ,

{Ea
µ, A

b
ν} = {P a

µ , Q
b
ν} = − δab

µν , (50)

and define the following linear combinations,

A+
µ = Aµ +Qµ

A−
µ = Aµ

E+
µ = Pµ

E−
µ = Eµ − Pµ . (51)

Since the only nonvanishing Poisson brackets are

{E±
µ , A

±
ν } = −δµν , (52)

we conclude that A+
µ ∼ Aµ +Qµ and A−

µ ∼ Aµ are indeed
two independent canonical variables.

More generally, we extend these ± variables into a one-
parameter family of ± variables by introducing a canonical
conjugation generated by

Φ = − τEµQµ , (53)

where τ is a parameter. This yields

A+
µ → e−ΦA+

µ e
Φ = Aµ + (1 − τ)Qµ

A−
µ → e−ΦA−

µ e
Φ = Aµ − τQµ

E+
µ → e−ΦE+

µ e
Φ = Pµ + τEµ

E−
µ → e−ΦE−

µ e
Φ = − Pµ + (1 − τ)Eµ . (54)

Since this is a canonical transformation, the Poisson brack-
ets (52) are preserved. In particular, since both A+

µ and
A−

µ gauge transform like an SU(N) gauge field

A±
µ = UA±

µU
−1 + U∂µU

−1 , (55)

we can indeed view them as independent gauge fields.
As a consequence the action in (50) separates into two

independent terms, one that depends only on the gauge
field A+

µ and the other that depends only on the gauge
field A−

µ

S(A,Q, π, ψ, P̄) = S+(A+) + S−(A−;π, ψ, P̄) , (56)

where

S+(A+) =
∫

−1
4
F 2

µν(A+) (57)

and

S−(A−;π, ψ, P̄) =
∫
πνDµFµν − P̄µ[Fµν , ψν ]

− 1
2
(Dµψν −Dνψµ)(DµP̄ν −DνP̄µ) . (58)

In particular, instead of the original SU(N) gauge symme-
try we now have two independent SU(N) gauge symmetries
acting on the fields A± respectively, i.e. we have a local
SU(N)+ × SU(N)− gauge symmetry. However, since the
fluctuation field

A+
µ − A−

µ = Qµ (59)

obeys trivial boundary conditions the gauge fields A±
µ are

subject to the condition that their second Chern charac-
ters coincide,

∫
FF̃ (A+) =

∫
FF̃ (A−) . (60)

This ensures that perturbatively the path integral does fac-
torize into independent ± partition functions: Since the
Chern characters of A±

µ coincide, their local i.e. perturba-
tive fluctuations are independent. This is desirable, since
we wish to reproduce the standard Yang–Mills perturba-
tion theory. Only when nonperturbative effects become
relevant, will there be a coupling between the ± sectors.
This is due to the fact that we must eventually sum over
all Chern characters, and after that the partition function
naturally is no more factorizable.

We now proceed to relate the A−
µ dependent part of our

action to the Parisi–Sourlas supersymmetric Yang–Mills
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theory. For this we first observe that this action admits
the following nilpotent BRST (Parisi–Sourlas) symmetry
(see Appendix B)

ΩA−
µ = ψµ

Ωψµ = 0
ΩP̄µ = πµ

Ωπµ = 0 , (61)

so that
Ω = ψµE

−
µ + πµη̄µ , (62)

where we have introduced the conjugate variable

{P̄µ, η̄ν} = −δµν . (63)

In particular, (58) can be represented as a BRST commu-
tator,

S−(A−) = {Ω, P̄µDνFµν} . (64)

If we define the space-time components of the Parisi–
Sourlas supergauge field

Aµ = A−
µ + θψµ − θ̄P̄µ + θθ̄πµ , (65)

we conclude from Appendix B that we can write (58) as

S−(A) =
1
4

∫
dxdθ̄ dθ F2

µν , (66)

where Fµν denotes the space-time components of the Parisi–
Sourlas field strength tensor,

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ] . (67)

Notice that since Ω does not act on the A+ field, the
BRST symmetry (61) is actually an invariance of the en-
tire action in (50). In particular, the path integral

ZYM ≈
∫

[ dQ][ dA][ dπ][ dψ][ dP̄]

× exp
{∫

−1
4
F 2

µν(A+) − {Ω,Ψ}(A)
}

(68)

is invariant under local variations of the gauge fermion Ψ ,
and reproduces (50) when we select Ψ as in (64).

The action (66) suggests that we are indeed dealing
with a Parisi–Sourlas supersymmetry. We now proceed to
reveal the remaining θ and θ̄ structure. For this we first
introduce the following more general gauge fermion

Ψ = P̄µ(DνFµν + κπµ) , (69)

where κ ∝ m2 is a mass scale. The ensuing path inte-
gral (68) is formally independent of κ, and when κ → 0
we recover (64). The topological part of the action now
becomes

{Ω,Ψ} =
1
2
(Dµψν −Dνψµ)(DµP̄ν −DνP̄µ)

+ πνDµFµν + P̄µ[Fµν , ψν ] + κπ2
µ . (70)

We can interpret this by introducing the full Parisi–Sour-
las Yang–Mills field strength

Fαβ = ∂αAβ − (−)αβ∂βAα + [Aα,Aβ ] , (71)

where now α, β = µ, θ, θ̄. If we define the full Yang–Mills
action in the Parisi–Sourlas superspace

SPS =
∫

dθ dθ̄
1
4
FαβFβα , (72)

and if we evaluate this action in the special case where

Aθ = Aθ̄ = 0 , (73)

we find (70) when we integrate over θ and θ̄. This sug-
gests that the topological action (58) in our path inte-
gral (50) indeed determines a (4+2)-dimensional Parisi–
Sourlas Yang–Mills theory.

In order to properly include the remaining Aθ and Aθ̄

components of the Parisi–Sourlas gauge field, we first in-
troduce the following pairs of canonically conjugated vari-
ables

{Pµ, ψν} = {P̄µ, ψ̄ν} = {πµ, λν} = −δµν . (74)

We then define

Eµ(y) = −λµ + θψ̄µ + Pµθ̄ + θθ̄E−
µ , (75)

so that we get the bracket

{Eµ(y1),Aν(y2)} = −δµν(y1 − y2) (76)

in the Parisi–Sourlas superspace. We then identify the
nilpotent operator (62) as the BRST operator for the con-
straint

E−
µ ≈ 0 . (77)

However, these constraints are not independent but are
subject to the Gauss law

DµEµ ≈ 0 , (78)

which projects (62) to the space A/G. Such a linear rela-
tion among the constraints (77) means that the constraint
algebra is reducible [11].

We now interpret Gauss law as a reducibility condition
in the BRST operator (62). For this we introduce the fol-
lowing canonically conjugated Parisi–Sourlas superfields,

Aθ = η − θϕ− θ̄λ+ θθ̄η̄

Eθ̄ = X̄ + θπ − θ̄p+ θθ̄X (79)

and

Aθ̄ = b̄+ θπ̄ + θ̄b+ θ̄θρ

Eθ = l + θc+ θ̄λ̄+ θ̄θc̄ , (80)

where we again use the notation in [6]. We define gµν =
δµν and gθθ̄ = −gθ̄θ = 1 and define the brackets of the var-
ious component fields in (79), (80) so that our superspace
variables obey the following Poisson brackets

{Eα(y1),Aβ(y2)} = −gαβδ(y1 − y2) . (81)
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As explained in [6], the components of these additional
superfields can be identified as the various ghosts that
we need to introduce for a fully gauge fixed quantiza-
tion of the constrained system (77), (78), according to the
Batalin–Fradkin algorithm [11]. Consequently we general-
ize the BRST operator (62) into

Ω → ψµE
−
µ + η̄µπµ + ϕP − η̄π − cρ+ c̄η̄

=
∫

dθ̄ dθ gαβ∂θAαEβ ∼ ∂θ , (82)

which reproduces equation (162) in Appendix B in terms
of our variables.

If we now introduce the following conjugation of (82)

Ω → e−ΦΩeΦ

= Ω + {Ω,Φ} +
1
2!

{{Ω,Φ}, Φ} + · · · (83)

with

Φ =
∫

dθ̄ dθ θ(Aa
θDab

µ Eb
µ +

1
2
fabcAa

θAb
θEc

θ̄) , (84)

where the covariant derivative Dab
µ is with respect to the

Parisi–Sourlas superconnection, we find for the conjugated
Ω

Ω =
∫

(gαβ∂θAa
αEa

β +Aa
θDab

µ Eb
µ − 1

2
fabcAa

θAb
θEc

θ̄) . (85)

Here the first term coincides with the translation operator
(82) in the θ-direction, and the two remaining terms have
the standard form of a nilpotent BRST operator for the
superspace gauge transformation, with

G = DµEµ (86)

the superspace Gauss law operator and Aθ, Eθ̄ viewed as
the superspace ghost.

In conclusion, we have identified our effective theory
with the Parisi–Sourlas supersymmetric Yang–Mills the-
ory. In particular, we have provided the proper identifi-
cation of the additional fields Aθ and Aθ̄ in terms of the
ghosts that we need for a complete gauge fixing in the
topological sector.

We now proceed to show that our Parisi–Sourlas the-
ory confines. For this we fix the SU(N)-gauge symmetry
in (72) by adding the gauge fixing term

∫
dθ̄ dθ

1
2λ

(∂αAα)2 + ghosts (87)

as in [5]. Using (73) the Gaussian part that involves gauge
fields becomes

1
2

∫
dθ̄ dθ Aµ

(
∂2

αδµν − (1 − 1
λ

)∂µ∂ν

)
Aν . (88)

If we denote the superspace momentum by P = (p, α, ᾱ)
and select the superspace analog of the Feynman gauge by

setting λ = 1, we find that the propagator of the superfield
(65) is

〈AµAν〉 =
δµν

P 2 =
δµν

p2 − κᾱα

= δµν

(
1
p2 +

κᾱα

p4

)
, (89)

where we used the standard properties of the Grassmann
numbers α and ᾱ. We can further choose to couple Aµ to
currents of the form

(1 +
1
2
ᾱα) Jµ(p). (90)

One then obtains a purely bosonic propagator

δµν

(
1
p2 +

κ

p4

)
. (91)

Indeed, this exhibits the proper infrared O(p−4) behav-
ior that leads to a linear potential between two static
sources. Furthermore, this O(p−4) infrared behavior in
(89) is unique in the following sense: By demanding lo-
cality and gauge invariance, we can generalize the gauge
fermion in (69) by expanding it in derivatives of πµ,

Ψ = P̄µ(DνFµν+κπµ+κ1Dνπνπµ+κ2D
2πµ+· · ·) . (92)

In the infrared limit p → 0 we then conclude that the dom-
inant contribution to the propagator indeed comes from
(69).

The infrared behavior of (89) implies that in the topo-
logical sector our theory confines. Indeed, previously it has
been conjectured [3] that the large distance limit of Yang–
Mills vacuum is a medium of randomly distributed color-
electric and color-magnetic fields. Quantitatively, this
means that in the infrared limit Yang–Mills theory can
be approximated by the following set of equations

Dab
µ F

b
µν = ha

ν

〈ha
µ(x)hb

ν(y)〉 = δab
µν , (93)

where the white noise random source ha
µ describes the ran-

dom color-electric and color-magnetic vacuum medium;
Notice that since gauge invariance implies

DµDνFµν = 0 (94)

for consistency we must interpret the equations (93) on
the gauge equivalence classes A/G.

The equations (93) coincide with (174) in Appendix
B, when we take into account the inessential complication
(94) and interpret our equations on A/G (with a nontrivial
moduli). As a consequence, the present construction can
be viewed as a first principles derivation of (93) in four-
dimensional Yang–Mills theory.

The argument presented in [3] states that as a conse-
quence of the Parisi–Sourlas mechanism, (93) imply an ef-
fective dimensional reduction D=4 → D=2 in the infrared
limit with the ensuing confinement of color. Indeed, by a
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direct computation [4] in the full Parisi–Sourlas theory,
where the restriction (73) is not imposed, one can show
that in the Parisi–Sourlas theory planar Wilson loops obey
an area law, with string tension σ determined1 by κ

σ =
1
4π
κNg2 . (95)

This is a direct consequence of the Parisi–Sourlas dimen-
sional reduction that relates (72) to the corresponding
two-dimensional, ordinary Yang–Mills theory. Hence our
results suggest that the qualitative structure developed in
[3] is indeed a proper way to describe color confinement
in the infrared limit of ordinary Yang–Mills theory.

However, even though we have found indications of an
area law and an O(p−4) propagator, these are not for the
original, physical field A+

µ . In order to show that we have
indeed derived color confinement from first principles, it is
necessary to show that the nonperturbative coupling be-
tween A+ and A− mediates confinement to the physically
relevant A+ sector of our theory. In particular, we need
to understand how a mass gap appears in the physical
spectrum.

4 Instantons and topological
Yang–Mills theory

We shall now proceed to investigate our variant (46) of the
(anti-)self-dual approximation to the Yang–Mills partition
function, obtained from (42) by replacing the density of
the Euler characteristic in (43) by the (anti-) self-dual den-
sity (45). We shall show that instead of the Parisi–Sourlas
theory, the approximation (46) yields the N=2 supersym-
metric Yang–Mills theory. Since the analysis of (46) is
more involved than that of (42), in the present section we
shall first develop some formalism and derive an appropri-
ate path integral representation of the Euler characteristic
(45). For simplicity, we specialize to the anti-self-dual con-
figurations F+ = 0.

4.1 Topological Yang–Mills

The path integral representation of the Euler characteris-
tic

X (A/G) =
∑

F+=0

sign det ||δF
+

δA
|| (96)

has been investigated by Atiyah and Jeffrey [12,13]. They
showed that (96) coincides with the partition function of
topological Yang–Mills theory [7] in the Mathai–Quillen
formalism [14]. Their construction is a direct generaliza-
tion of the familiar result that the Euler characteristic of a
compact Riemannian manifold can be represented by the
partition function of the de Rham supersymmetric quan-
tum mechanics [13,15]. In the following we shall re-derive

1 As a consequence of the restriction (73), the parameter κ
becomes in our case merely a gauge fixing parameter, and as
such unphysical

their results in a manner that enables us to introduce the
N=2 representation of (46).

The partition function of topological Yang–Mills the-
ory is an example of a cohomological path integral of the
form

ZTYM =
∫

exp ({Ω0, Ψ}) , (97)

where Ω0 is a nilpotent BRST operator and Ψ is a gauge
fermion. Standard arguments imply that such a path in-
tegral describes only the cohomology classes of Ω0, and it
is formally invariant under local variations of Ψ .

In [12] Atiyah and Jeffrey introduced a one-parameter
family of Ψ ’s that interpolates between the Gauss–Bonnet–
Chern and the Poincaré–Hopf representatives of the Euler
class on A/G, and for a definite value of the parameter
their action reproduces the original action of topological
Yang–Mills theory [7]. In the following section we need an
explicit representation of their construction. For this we
use the notation of Ouvry, Stora and van Baal [16] (except
that we denote by u and v the standard ghosts for gauge
fixing) and introduce a graded symplectic manifold with
the following canonical variables

form EVEN ODD
degree (q,p) (q,p)

0-form ϕ , π u, v
1-form A, E ψ, X
2-form b, c ψ̄, X̄
4-form ϕ̄ , π̄ β, γ

The graded Poisson brackets of these variables are

{pa, qb} = − δab (98)

{pa
µ, q

b
ν} = − δab

µν

{pa
µν , q

b
ρσ} = − 1

4
δab(δµρδνσ − δµσδνρ + εµνρσ) ,

where the 2-form bracket explicitly accounts for the anti-
symmetry and self-duality of the corresponding variables.

The nilpotent BRST operator Ω0 that computes the
cohomology of the topological Yang–Mills theory is a lin-
ear combination [6,16]

Ω0 = ΩTOP + ΩYM + Ωgf . (99)

Here
ΩYM = uG +

1
2
v[u,u] + hū (100)

is the standard nilpotent BRST operator that fixes the
SU(N) gauge invariance, with

G = DµEµ + [ϕ, π] + [ϕ̄, π̄] + [β, γ]
+ [ψµ,Xµ] + [ψ̄µν , X̄µν ] + [bµν , cµν ] (101)

the Gauss law operator which generates the gauge trans-
formations of the various fields

[Ga,Gb] = fabcGc . (102)
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The second operator

ΩTOP = ψµEµ + ϕ(DµXµ + [ψ̄µν , cµν ] + v)
+ bµνX̄µν + γ[ϕ, ϕ̄] + βπ̄ (103)

is the BRST operator for the topological symmetry. It is
equivariantly nilpotent,

Ω2
TOP = −2ϕG . (104)

Since this generates a gauge transformation with ϕ as the
gauge parameter, ΩTOP is nilpotent on the gauge orbit
A/G.

For completeness we have also included in (99) the
nilpotent Ωgf which is necessary for gauge fixing the var-
ious symmetries. The structure of Ωgf in the topological
sector has been explained e.g. in [6]. Here we do not need
to consider it explicitly, it is sufficient to know that the
topological gauge invariances can be fixed by an appropri-
ate gauge condition.

We construct the action of topological Yang–Mills the-
ory by first defining four different gauge fermions Ψi

Ψ1 = ψ̄ ∧ b
Ψ2 = ψ̄ ∧ F+

Ψ3 = ?ϕ̄ ∧D ? ψ

Ψ4 = β ∧ [ϕ, ?ϕ̄] , (105)

where ? denotes the Hodge duality transformation. We in-
troduce four numerical parameters αi and define the gauge
invariant topological action

STOP =
4∑

i=1

αi{ΩTOP, Ψi} . (106)

By substituting (105) and eliminating the auxiliary field
b by a Gaussian integration in (97), we obtain

−STOP = α1ϕ[ψ̄, ψ̄]

+ α2

[
−α2

α1

1
4
F+ ∧ F+ + Dψ+ ∧ ψ̄

]

+ α3

(
? β ∧D ? ψ + ?ϕ̄ ∧ [ψ, ?ψ] − ?ϕ̄D ? Dϕ

)

+ α4

(
[ϕ, ?ϕ̄]2 + ϕ[?β, ?β]

)
? 1 . (107)

Different values of αi label different representations of the
theory, and by general arguments the ensuing path inte-
gral (97) should be independent of these parameters. For
example, if we select

α1 = −α2 = α3 = 1, α4 = 0 , (108)

we find the action presented in [16]. On the other hand,
the action originally introduced by Witten [7] emerges if
we select

α1 = 4 , α2 = −4 , α3 = 1 , α4 =
1
2
, (109)

and use the following identification of variables between
the notations in [16] and [7]:

OSvB Witten

A A
ψ iψ
ϕ iφ
ψ̄ 1

4X
?ϕ̄ − i

2λ
?β η

The result is

−SW = −1
4
F 2

µν − 1
4
FµνF̃µν − 1

2
φD2

µλ + iηDµψµ

− iDµψνXµν +
i
8
φ[Xµν ,Xµν ] +

i
2
λ[ψµ, ψµ]

+
i
2
φ[η, η] +

1
8
[φ, λ]2 . (110)

In [12] Atiyah and Jeffrey showed that the correspond-
ing path integral (97) yields the Euler characteristic (96)
of A/G. For this, we return to the notation of [16] and
select

α2 = −1 , α4 = 0 , (111)

but leave α1 and α3 arbitrary. We again eliminate b by a
Gaussian integration and find for the path integral (97)

ZTYM =
∫

[ dA] · · · [ dλ][
√

1
4πα1

]

× exp
{

−
∫

1
4α1

(F+)2 + Dψ+ ∧ ψ̄
− α1ϕ[ψ̄, ψ̄] − α3(?ϕ̄ ∧ [ψ, ?ψ] − ?ϕ̄D ? Dϕ)

− α3 ? β ∧D ? ψ
}

(112)

The parameter α3 can be eliminated by redefining β and
ϕ̄, and we get

ZTYM =
∫

[ dA][ dψ][ dψ̄][ dϕ][
√

1
4πα1

]

× exp
{

−
∫

1
4α1

(F+)2 + Dψ+ ∧ ψ̄

− α1

(
1

?D ? D
? [ψ, ?ψ]

)
· [ψ̄, ψ̄]

}
(113)

Here
R =

1
?D ? D

? [ψ, ?ψ] (114)

can be identified as the curvature 2-form on A/G when we
restrict ψ to be a horizontal 1-form over A/G,

D ? ψ = 0 , (115)

which follows as a δ-function constraint when we integrate
over β in (112). Indeed, if we introduce the connection

Γ =
1

?D ? D
? D ? ψ , (116)
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and define the exterior derivative by

d = ψa
µ

δ

δAa
µ

, (117)

we find that the curvature 2-form

R = dΓ + Γ ∧ Γ (118)

coincides with (114) when we restrict to the horizontal
bundle (115).

According to general arguments, the path integral (113)
is at least formally independent of α1 and we can interpret
it by considering various limits: When α1 → ∞ we find
that (113) reduces to the Gauss–Bonnet–Chern represen-
tation of the Euler characteristic on A/G

ZTYM =
∫

[ dA][ dψ]Pf(R) , (119)

where R is the curvature 2-form (114). On the other hand,
when α1 → 0 we get

ZTYM =
∫

[ dA]δ(F+) det ||D+||

≈
∑

F+=0

sign det ||δF
+

δA
|| , (120)

which is the Poincaré–Hopf representation (96) of the Eu-
ler characteristic on A/G. As a consequence we have a
generalization of the finite dimensional relation between
the Gauss–Bonnet–Chern and Poincaré–Hopf theorems,
and in particular (114) is indeed the curvature 2-form on
A/G.

We now proceed to discuss how the present results lead
to the emergence of the N=2 structure and confinement
in the approximation (46).

4.2 The instanton approximation to Yang–Mills

Our instanton approximation replaces the background field
representation (39) of the original Yang–Mills partition
function (3) by the following summation over anti-self-
dual configurations,

ZYM ≈
∑

F+=0

sign det ||δF
+

δA
||

×
{∫

[ dQ] exp{
∫

−1
4
F 2

µν(A+Q)}
}
.(121)

Evidently the self-dual approximation is similar, and there
is no need to consider it explicitly. In order to ensure con-
sistency with cluster decomposition, when necessary we
can also introduce the explicit symmetrization (47).

According to (120) the summation over anti-self-dual
configurations in (121) can be obtained as a definite limit
of the partition function (112) of topological Yang–Mills

theory. This implies that (121) coincides with the α1 → 0
limit of the following more general path integral

ZYM(α1, α3) =
∫

[ dQ][ dA] · · · [ dβ]

× exp{−SYM(A+Q) − SAJ(A;α1, α3)} , (122)

i.e.,

lim
α1→0

ZYM(α1, α3) = ZYM . (123)

Here SYM is the Aµ + Qµ dependent Yang–Mills back-
ground field action that appears in (121) and SAJ is the
Aµ dependent Atiyah–Jeffrey representation of the topo-
logical Yang–Mills action that appears in (112).

Due to the presence of the Yang–Mills background ac-
tion, the path integral (122) depends a priori nontrivially
on the parameters α1 and α3, and (121) and (122) coin-
cide only in the α1 → 0 limit. However, we now argue that
(122) is actually independent of α1 and α3 so that it coin-
cides with (121) independently of these parameters. More
generally, we argue that independently of the parameters
αi the path integral (121) coincides with

ZYM =
∫

[ dQ][ dA] · · · [ dβ] (124)

× exp
( ∫

−1
4
F 2

µν(A+Q) −
4∑

i=1

αi{ΩTOP, Ψi}
)
,

where ΩTOP is the topological BRST operator (103) and
Ψi are the gauge fermions defined in (105). Here the second
term in (125) depends only on the classical field Aµ, and
coincides with the action (106) of topological Yang–Mills
theory.

This parameter independence of (125) follows imme-
diately when we recall (51) – (54) that A+Q and A can
be viewed as two independent gauge fields A+ and A−.
The action in (125) then separates into two independent
contributions, the first term depends only on the gauge
field A+

µ in (54) and the second term depends only on the
gauge field A−

µ in (54)

SYM(A+) + STOP(A−) =

1
4
F 2

µν(A+) +
4∑

i=1

αi{Ω−
TOP, Ψi}(A−) . (125)

In particular, the BRST operator Ω−
TOP acts only on the

fields A− and E−

Ω−
TOP = ψµE

−
µ + ϕ(D−

µ Xµ + [ψ̄µν , cµν ] + ρ)

+ bµνX̄µν + γ[ϕ, ϕ̄] + βπ̄ . (126)

For τ = 0 (126) reduces to (99) except for the (irrele-
vant) shift Eµ → Eµ − Pµ. Since τ only parametrizes a
canonical transformation this establishes the asserted αi-
independence of the path integral (125). In particular, by
selecting α2 = −1, α4 = 0 and taking the α1 → 0 limit we
obtain our anti-self-dual approximation (121).
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As in Sect. 3, the present construction implies that in-
stead of the original SU(N) gauge symmetry we now have
two independent SU(N) gauge symmetries acting on the
fields A± respectively. In order to properly eliminate the
SU(N)+ × SU(N)− gauge invariance, we need a BRST op-
erator for both SU(N): In addition of the BRST operator
(100) which eliminates the SU(N)− gauge invariance

Ω−
YM = uG− +

1
2
v[u,u] + hū , (127)

where the Gauss law operator G− is now

G− = D−
µE

−
µ + [ϕ, π] + [ϕ̄, π̄] + [β, γ]

+ [ψµ,Xµ] + [ψ̄µν , X̄µν ] + [bµν , cµν ] , (128)

we also introduce the following nilpotent BRST operator
for the SU(N)+ gauge group

Ω+
YM = cD+

µE
+
µ +

1
2
b[c, c] + tc̄ . (129)

We then add the corresponding gauge fixing terms to our
action,

SYM(A+) + STOP(A−) =∫
1
4
F 2

µν(A+) +
4∑

i=1

αi{Ω−
TOP, Ψi} + {Ω+

YM, Ψ
+}

+ {Ω−
YM, Ψ

−} . (130)

Here Ω−
TOP and Ω−

YM depend only on A−, E− while Ω+
YM

depends only on A+, E+. Hence Ω+
YM anticommutes with

both ΩTOP and Ω−
YM and the ensuing path integral is in-

variant under local variations of the gauge fermions Ψi(A−),
Ψ±(A±).

In summary, we have established that our instanton
approximation (46) involves the topological Yang–Mills
theory. Since we expect our instanton approximation to
adequately describe the Yang–Mills partition function and
since the Parisi–Sourlas theory confines, this suggests that
topological Yang–Mills theory also confines. In the next
section we proceed to show that this is indeed the case: We
shall show that our topological Yang–Mills theory yields
the minimal N=2 supersymmetric Yang–Mills theory at
points of its moduli space where confinement occurs.

5 N=2 supersymmetry and color confinement

We shall now proceed to relate the previous construction
to the minimal N=2 supersymmetric Yang–Mills theory.
Indeed, topological Yang–Mills theory is a twisted version
of the N=2 theory, obtained by reinterpreting the action
of Lorentz transformations [7]. However, for the present
purposes we need a refinement of this connection: In the
minimal N=2 supersymmetric theory confinement is only
known to occur at special points in the N=2 quantum
moduli space that correspond to massless dyons. Since we

wish to argue that there is a connection between confine-
ment in the N=2 theory and color confinement in ordinary
Yang–Mills theory, we need to establish that (un)twisting
actually takes us to such special points of the N=2 moduli
space.

The (Minkowski space) action of the minimal SU(N)
invariant N=2 supersymmetric Yang–Mills theory is

−SN=2 = − 1
4
F 2

µν − DµBDµB̄ − iλ̄iσ̄µDµλ
i

− 1√
2
B[λ̄i, λ̄

i] +
1√
2
B̄[λi, λ

i] +
1
2
[B, B̄]2 . (131)

By comparing the actions (110) and (131) term-by-term,
we observe an obvious similarity. Indeed, since the Lorentz
algebra SO(3,1) is related to SO(4) ∼ SU(2) × SU(2) and
since the action (131) has an internal SU(2) symmetry,
we can re-define the action of Lorentz transformations [7].
Specializing to SU(2), at the level of fields this means that
we look for an invertible change of variables between (110)
and (131)

(B, B̄, λi, λ̄i, Aµ) → (φ, λ, η, ψµ,Xµν , Aµ) , (132)

which maps (131) into (110) and vice versa. By direct
comparison of the actions we conclude that this change of
variables is defined by

B = − i
√

2φ

B̄ = − i√
8
λ

λαi = − σµ
αiψ

µ

λ̄α̇i = − 1
2
εα̇iη +

1
4
σ̄µν

α̇i Xµν , (133)

and the inverse transformation is

φ =
i√
2
B

λ = i
√

8B̄

η = λ̄i
i

ψµ =
1
2
σαi

µ λαi

Xµν = 2σ̄α̇i
µν λ̄α̇i . (134)

Indeed, if we substitute (133) in the N=2 action (131)
(modulo analytic continuation to the Euclidean space and
the topological FF̃ term) we find

−S = −1
4
F 2

µν − 1
2
φD2

µλ + iηDµψµ + iXµνDµψν

+
i
8
φ[Xµν ,Xµν ] +

i
2
λ[ψµ, ψµ]

+
i
2
φ[η, η] +

1
8
[φ, λ]2 , (135)

which is the action (110) of the topological Yang–Mills
theory. Since this change of variables has a trivial Jacobian
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in the path integral, we conclude that the ensuing parti-
tion functions coincide, only the interpretation of these
two theories is different.

Similarly we can introduce a change of variables which
relates the N=2 theory to the self-dual topological Yang–
Mills theory instead of the anti-self-dual one.

Next we consider the pertinent supersymmetry alge-
bras. In the N=2 theory we have

{Qα
i, Q̄β̇j} = 2δi

jσ
µ

αβ̇
Pµ

{Qα
i, Qβ

j} = εαβε
ijZ

{Q̄α̇i, Q̄β̇j} = −εα̇β̇εijZ
? , (136)

where
Z ∼ ane + aDnm (137)

is the central charge, and we have used the notation in
[1]. Here a is a complex coordinate of the N=2 moduli
space. It labels different Higgs vacua and for a 6= 0 the
SU(2) gauge symmetry becomes spontaneously broken to
U(1). The parameter aD is the corresponding dual vari-
able, and (ne, nm) are the electric and magnetic charges.
According to [1] the zeroes of (137) are of special impor-
tance: These are the points where dyons become massless
and may condense, implying confinement according to the
picture developed in [2].

We shall now argue that it is exactly these Z = 0
points of the moduli space that appear in our construction.
For this we proceed to represent the N=2 supersymmetry
algebra (136) in terms of the topological variables:

By applying (133) in (136) we find that the BRST
operator of the topological Yang–Mills theory is related
to the N=2 supersymmetry generators by

Ω = εα̇iQ̄α̇i . (138)

Furthermore, since

{Q1
2, Q̄1̇2} = −2(H − P3) (139)

and
{Q2

1, Q̄2̇1} = −2(H + P3) , (140)

where H is the Hamiltonian of (131), combining (139) and
(140) we get

H = −1
4
{Q̄1̇2 − Q̄2̇1, Q1

2 −Q2
1} = {Ω,Ψ} . (141)

This implies that the gauge fermion Ψ that yields the ac-
tion (135) of topological Yang–Mills theory is

Ψ =
1
4
(Q2

1 −Q1
2) . (142)

If we further define the following two operators

Qµ = σµ
αiε

αβQβ
i

Dµν = σ̄µνα̇

β̇
εβ̇iQ̄α̇i , (143)

and introduce the anti-self-dual projection operator

P−µνρσ =
1
4

(δµρδνσ − δµσδνρ − iεµνρσ) , (144)

we find that in terms of the twisted variables the super-
symmetry algebra (136) becomes

{Ω,Ω} = −2Z?

{Ω,Qµ} = 4Pµ

{Ω,Dµν} = 0
{Qµ, Qν} = 2ηµνZ

{Qµ, Dρσ} = 8PνP−ρσµν

{Dµν , Dρσ} = −2Z?P−µνρσ . (145)

In particular, we find that if the central charge

Z ∼ ane + aDnm (146)

is nonvanishing, the BRST operator is not nilpotent. How-
ever, since our starting point is topological Yang–Mills
theory where Ω must be nilpotent and since (in each in-
stanton sector) the N=2 theory differs from the original
topological theory only by an invertible change of vari-
ables, we conclude that in the present case we must nec-
essarily have

Z = 0 . (147)

This means that we must restrict our twisted N=2 theory
to a point in its moduli space where the central charge Z
vanishes, i.e.

ane = −aDnm . (148)

For color confinement the Hamiltonian in the ordinary
Yang–Mills theory must exhibit a mass gap. This ensures
that the physical degrees of freedom are not massless glu-
ons, but massive composites such as a glueball. In the N=2
theory a nonvanishing a introduces a mass scale, and gen-
erates a mass for the non-abelian components of the gauge
field by Higgs mechanism. Consequently it is natural to
consider such points in the N=2 quantum moduli space
where a 6= 0.

The condition (148) implies that massless dyons are
present in the spectrum of our N=2 theory. It is natural to
expect that these massless dyons condense, and this leads
to confinement [1]. Indeed, this is consistent with our con-
struction: We have found that in our instanton approxima-
tion the Parisi–Sourlas theory becomes replaced by topo-
logical Yang–Mills theory. Since the Parisi–Sourlas theory
confines, it is natural to expect that the topological theory
also confines. Since (un)twisting of the topological theory
yields the minimal N=2 theory at points of its quantum
moduli space where massless dyons emerge, our result is
fully consistent with the condensation of massless dyons
[1].

6 Comparison

In the previous sections we have studied the Yang–Mills
partition function in two different approaches. We have
first investigated the summation over all possible back-
ground field configurations which yields an effective field
theory that involves the Parisi–Sourlas supersymmetric
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Yang–Mills theory. We have then investigated an instan-
ton approximation which yields a description based on the
topological and the N=2 supersymmetric Yang–Mills the-
ories.

Since the topological Yang–Mills theory is related to
the N=2 supersymmetric Yang–Mills theory by the invert-
ible change of variables (133), the Parisi–Sourlas Yang–
Mills theory must also contain the N=2 theory, both in its
self-dual and anti-self-dual subsectors. This means in par-
ticular that the confinement mechanism which has been
identified in the N=2 theory [1] must admit an interpre-
tation in terms of the D=4 → D=2 Parisi–Sourlas dimen-
sional reduction. In particular, there should be a direct re-
lation between the picture of confinement by dyon conden-
sation developed in [1,2] and the picture of confinement
by randomly fluctuating color-electric and color-magnetic
fields developed in [3]. Furthermore, the derivation [4] that
planar Wilson loops in the Parisi–Sourlas theory obey an
area law should also be directly applicable to the cor-
responding Wilson loops in the N=2 approach, modulo
a change of variables that originates from the different
choice of gauge fermions Ψ .

Finally, we need to consider the off-shell phase factors
that appear in (41): Since these phase factors depend only
on the topological connection A−, they do not break the
SU+(N) × SU−(N) gauge symmetries. However, they do
explicitly break the BRST supersymmetries, and in par-
ticular the Ψ independence in the topological sectors, but
in a controllable fashion. Since the BRST transformation
is a change of variables of the form

φa → φa + δΨ{Ω,φa} , (149)

we conclude that when we vary the gauge fermion Ψ →
Ψ + δΨ the phase factors do not remain intact but suffer a
nontrivial change of variables. Besides the terms that we
have discussed in the previous sections, we should then
add the phase factors which have been subjected to the
proper changes of variables. These are additional non-local
terms that should be included to our action. However,
since these terms are irrelevant in the infrared limit, we
need to include them only when we consider higher order
corrections.

Conclusion

We have applied background field formalism in the path
integral approach to investigate confinement in the or-
dinary Yang–Mills theory. By comparing the summation
over all background fields to the summation over self-dual
fields, we have found an intimate relationship between the
Parisi–Sourlas and N=2 approaches to confinement. In
particular, our results suggest that the N=2 approach to
confinement can also be interpreted in terms of the Parisi–
Sourlas dimensional reduction. Furthermore, the qualita-
tive picture of the N=2 approach in terms of massless dyon
condensation should coincide with the Parisi–Sourlas pic-
ture where the Yang–Mills vacuum is viewed as a medium
of randomly fluctuating color-electric and color-magnetic
fields.
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Appendix A Classical Morse theory

In Sect. 2 we have motivated our instanton approximation
(46) using an analogy with Morse theory. For complete-
ness, we here review the relevant aspects of classical Morse
theory [10].

In classical Morse theory we are interested in the crit-
ical point structure of a function H(x) called the Morse
function, defined on a compact manifold. For simplicity,
we assume that the critical points dH = 0 are isolated
and nondegenerate. A sum such as (40)

∑
dH=0

1 (150)

counts the number of critical points, and is bounded from
below by the sum of Betti numbers Bn of the underlying
manifold ∑

dH=0

1 ≥
∑

n

Bn . (151)

On the other hand, a sum such as the r.h.s. of (19) is
independent of the Morse function H and according to
the Poincaré–Hopf theorem [10] it coincides with the Euler
characteristic X of the manifold

∑
dH=0

sign det || ∂2H

∂xa∂xb
|| =

∑
n

(−)nBn ≡ X . (152)

If H is a perfect Morse function these two quantities co-
incide, but for a general Morse function they are different
since in general the fluctuation matrix ∂abH admits an
odd number of zero modes for some of the critical points
xa.

For a compact finite dimensional Riemannian mani-
fold the Euler characteristic (152) coincides with the par-
tition function of the de Rham supersymmetric quantum
mechanics [13,15]. (See also Appendix B.) This partition
function can be evaluated exactly, e.g. by localizing the
corresponding path integral to the Euler class of the man-
ifold. In this way we obtain the standard relation be-
tween the Poincaré–Hopf and Gauss–Bonnet–Chern theo-
rems [13].

On the other hand, the summation that appears in
(46) is an infinite dimensional generalization of a sum of
the form

∑
dH=0

sign det || ∂2H

∂xa∂xb
|| exp{−TH} , (153)

where H corresponds to the Q-integral in (46). When H
and H coincide, we obtain a quantity that appears in
an equivariant version of the Poincaré–Hopf theorem [17].
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There is also an equivariant version of the Gauss–Bonnet–
Chern theorem, and as in conventional Morse theory one
can derive a relation between these two theorems using
an equivariant version of the de Rham supersymmetric
quantum mechanics [17]. The pertinent path integral is in-
timately related to a standard Hamiltonian path integral,
with the Morse function H interpreted as the Hamiltonian
function. Indeed, this interrelationship between equivari-
ant Morse theory and standard Hamiltonian path integrals
can be utilized to evaluate certain Hamiltonian partition
functions exactly, using localization techniques [18]. This
leads to the Duistermaat–Heckman integration [14] for-
mula and its quantum mechanical generalizations [17,18].

Consequently we expect that (46) provides a good ap-
proximation of the original partition function (39).

Appendix B Quantum Morse theory
and Parisi–Sourlas supersymmetry

In the present article we have investigated the infrared
limit of the Yang–Mills partition function. In our construc-
tion we have employed quantities such as the Poincaré–
Hopf representation of the Euler characteristic

X (A/G) =
∑

DF=0

sign det ||δDF
δA

||

=
∑
F ±

sign det ||δF
±

δA
|| (154)

on the gauge equivalence classes A/G. In this appendix we
shall relate such Morse theoretic quantities to the Parisi–
Sourlas formalism. For this we consider a generic D-dimen-
sional quantum field theory defined by an action S(φa),
where {φa} are fields that take values on some configura-
tion space which in the case of the Yang–Mills theory is
A/G. For simplicity, we shall assume that S(φa) has the
same formal properties as a nondegenerate Morse func-
tion.

According to the Poincaré–Hopf theorem the Euler
characteristic of the {φa} field space can be represented
as

X (φ) =
∑

δS=0

sign det || δ2S

δφaδφb
||

=
∫

[ dφ]δ
(
δS

δφa

)
det || δ2S

δφaδφb
||

=
∫

[ dφ][ dπ][ dψ][ dP̄]

× exp{i
∫
πa δS

δφa
+ ψa δ2S

δφaδφb
P̄b} . (155)

A priori this is independent of the Morse function S(φ).
Here we have introduced one commuting (πa) and two
anticommuting (ψa, P̄a) auxiliary variables, to exponen-
tiate the δ-function and the determinant respectively. The

action in (155)

Seff =
∫
πa δS

δφa
+ ψa δ2S

δφaδφb
P̄b (156)

has the following nilpotent supersymmetry

Ωφa = ψa

Ωψa = 0
ΩP̄a = πa

Ωπa = 0 , (157)

so that we can represent Ω by

Ω = ψa δ

δφa
+ πa δ

δP̄a
, (158)

and clearly
Ω2 = 0 . (159)

We identify (157) as the Parisi–Sourlas supersymmetry [5],
when realized on a scalar superfield in the Parisi–Sourlas
superspace. In addition to the space coordinates x, this
superspace has two anticommuting coordinates θ and θ̄

θ2 = θ̄2 = θθ̄ + θ̄θ = 0 . (160)

The scalar superfield is

Φa(x, θ, θ̄) = φa + θψa − θ̄P̄a + θθ̄πa , (161)

and the supersymmetry (157) can be identified with the
translation in the θ direction of the superspace,

Ω =
∫
∂θΦ

a δ

δΦa
∼ ∂θ . (162)

Using (161) we can write the action in (155) as
∫

dx
(
πa δS

δφa
+ ψa δ2S

δφaδφb
P̄b

)
=

∫
dxdθ̄ dθ S(Φ) . (163)

Hence, as a function of the superfield Φa the action (156)
has the same functional form as our original action S(φ).
Furthermore, if we introduce the following functional

Ψ = P̄a δS

δφa
, (164)

we find that (156) is closed under the supersymmetry op-
erator (158)

∫
πa δS

δφa
+ ψa δ2S

δφaδφb
P̄b =

∫
ΩΨ. (165)

Consequently, the path integral (155) is of the standard
cohomological form (97)

X (φ) =
∫

[ dφ][ dπ][ dP̄][ dψ] exp{i
∫
ΩΨ} , (166)
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and in particular it is invariant under local variations of
the gauge fermion Ψ . Notice that this ensures that the Eu-
ler characteristic (155) is indeed independent of the local
details of the “Morse functional” S(φ).

We shall now apply the Ψ -invariance of (166) to gen-
eralize (164) to

Ψ = P̄a(
δS

δφa
+
κ

2
πa) , (167)

where κ is a parameter. For the action this yields∫
ΩΨ =

∫
πa δS

δφa
+ ψa δ2S

δφaδφb
P̄b − κ

2
π2 , (168)

and in terms of the superfield Φ we get∫
ΩΨ =

∫
dxdθ̄ dθ

{
S(Φ) − κ

2
Φa∂θ̄∂θΦ

a
}
. (169)

If the original action S(φ) has the standard functional
form

S(φ) =
1
2
φa(−ut)φa + V (φ) , (170)

we then conclude that the superspace action can be rep-
resented in the corresponding superspace form

S(Φ) =
1
2
Φa(−ut − κ∂θ̄∂θ)Φa + V (Φ) . (171)

This is the standard Parisi–Sourlas action for a scalar field
theory that has been extensively investigated in [5]. In par-
ticular, it has been established that in perturbation theory
the superspace quantum field theory determined by (171)
coincides diagram-by-diagram with the quantum field the-
ory of (170), but in two less space-time dimensions. This D
→ D-2 dimensional reduction is a consequence of the neg-
ative dimensionality of the anticommuting coordinates [5].
The dimensional transformation from the D-dimensional
coupling constants etc. to their (D-2)-dimensional coun-
terparts is determined by the parameter κ which has the
dimensions

[κ] ∝ m2 , (172)

when we define the anticommuting variables θ and θ̄ to be
dimensionless. The overall numerical scale of κ is undeter-
mined, and can be changed by redefining the normaliza-
tion of the θ, θ̄ integral.

As explained in [5], the superspace quantum theory
can also be interpreted in terms of a stochastic differential
equation. For this we introduce an additional variable h
and write the path integral (166), (167) in the following
equivalent form

X (φ) =
∫

[
1

2
√
κ

dh][ dφ]δ(
δS

δφa
− ha) det || δ2S

δφaδφb
||

× exp{−
∫

1
4κ
h2}

=
∫

[
1

2
√
κ

dh] exp{−
∫

1
4κ
h2}

×
∑

δS
δφa =ha

sign det || δ2S

δφaδφb
|| . (173)

This has the interpretation of averaging classical solutions
to the stochastic differential equation

δS

δφa
= −utφa + ∂aV (φ) = ha (174)

over the external Gaussian random source h. Notice that
as a consequence of the Ψ invariance the integral (173) is
actually independent of κ, and if we take the κ → 0 limit
and recall the Gaussian definition of a δ-function we find
that (173) reduces to (155). This is fully consistent with
the fact that the Euler characteristic is independent of the
Morse functional. Indeed, from the Morse theory point of
view

Sh(φ) = S(φ) + haφa (175)

is simply another (nondegenerate) Morse functional. (Here
we assume that the haφa term is a small perturbation in
the sense described in [19].)

Finally, we conclude this section by deriving the Gauss–
Bonnet–Chern theorem that represents X (φ) in terms of
the curvature 2-form on the configuration space {φa}.
(Here we assume that φa has a nontrivial topology; If the
configuration space is a flat Euclidean manifold, see [19]).
For this we introduce a canonical transformation, deter-
mined by conjugating Ω

Ω → e−UΩ eU . (176)

We select
U = −Γ a

bcψ
cP̄aλ

b , (177)

where we have introduced the conjugate variable

{πa, λb} = −δab , (178)

and Γ a
bc(φ) are components of a connection on the con-

figuration space {φa}. For the conjugated Ω we find the
following transformation laws,

Ωφa = ψa

Ωψa = 0
ΩP̄a = πa + Γ c

abψ
bP̄c (179)

Ωπa = Γ c
abπcψ

b − 1
2
Rc

adbψ
bψdP̄c ,

which we identify as the familiar transformation law of
the standard (N=1) de Rham supersymmetric quantum
mechanics [17]. Indeed, if we assume that the connection
Γ a

bc is metric and use the metric tensor gab(φ) to define

Ψ = gabπaP̄b , (180)

we immediately find that the corresponding path integral
(166) evaluates to

X (φ) =
∫

[ dφ][ dψ] Pf[
1
2
Ra

bcdψ
cψd] . (181)

This is the formal (functional) Euler characteristic of the
configuration space {φa}, and establishes that the Gauss–
Bonnet–Chern representation of the Euler characteristic
indeed coincides with the Poincaré–Hopf representation
(155), (173).
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